
Afivo: a framework for finite volume simulations on

adaptively refined quadtree and octree grids

Jannis Teunissen, Ute Ebert

February 17, 2016

Abstract

Afivo is a small framework for doing numerical simulations on adaptively refined quadtrees
(2D) and octrees (3D). A geometric multigrid solver suitable for these grids is included.
Compared to other simulation frameworks, a ‘feature’ of Afivo is that it provides less func-
tionality, which can make it easier to adapt. For example, only shared-memory paralleliza-
tion (OpenMP) is included, so that no code for parallel load balancing or communication is
required. The framework is available as free/open source software.

1 Introduction

Numerical simulations can often be sped up by having a different mesh in different parts of the
domain. There is usually a trade-off: with a more flexible mesh, the cost per computational cell
increases. For example, computing a second order approximation of the Laplacian is straight-
forward on a uniform Cartesian grid. But on an unstructured triangle mesh, such an operation
is more complicated: first the neighbors of a cell need to be determined, and then some form of
interpolation is required.

Here, we present a framework for simulations on adaptively refined quadtree (2D) and octree
(3D) meshes. The main advantage of such meshes is that they provide adaptivity while keeping
the grid structure simple. In D dimensions, a quadtree or octree grid consist of boxes that each
contain ND cells. A box with a grid spacing h can be subdivided into 2D smaller boxes with
grid spacing h/2. By refining boxes up to different levels, local refinements can be created. In
Afivo ‘2:1 balance’ is ensured, which means that between neighboring cells the refinement level
differs by at most one. The framework is implemented in Fortran 2003, and is available under
the GNU GPLv3 license.

Below, we first discuss the motivation for developing Afivo, by comparing it to some al-
ternatives. Then the basic data structures and methods are described in sections 3 and 4. In
section 5, design choices for parallelization and ghost cells are discussed, after which the multigrid
implementation is described in section 6.

2 Motivation and alternatives

There exist numerous frameworks for doing (parallel) numerical computations. Table 1 lists
frameworks that operate on structured grids. There are perhaps even more unstructured grid
and/or finite element frameworks, but we do not discuss these here.

1

Name Application Language Parallel Mesh

Boxlib [2] General C/F90 MPI/OpenMP Block-str.
Chombo [3] General C++/Fortran MPI Block-str.
AMRClaw Flow F90/Python MPI/OpenMP Block-str.
SAMRAI [4] General C++ MPI Block-str.
AMROC Flow C++ MPI Block-str.
Paramesh [5] General F90 MPI Orthtree
Dendro [6] General C++ MPI Orthtree
Peano [7] General C++ MPI/OpenMP Orthtree
Gerris [8] Flow C MPI Orthtree
Ramses [9] Self gravitation F90 MPI Orthtree

Table 1: A list of frameworks for parallel numerical computations on adaptively refined but
structured numerical grids. For each framework, the typical application area, programming
language, parallelization method and mesh type is listed. This list is largely taken from Donna
Calhoun’s homepage [10].

Two types of structured meshes are commonly used: block-structured meshes and orthtree1

meshes. Examples of these meshes are shown in figure 1. All the listed frameworks use MPI
(which stands for Message Passing Interface) for parallelization. This is a distributed memory
technique, so that multiple processors connected by a network can be used in parallel. Some
codes also support OpenMP, which is a shared-memory parallelization technique that requires
processor cores to have access to the same memory.

Block-structured meshes are more general than orthtree meshes: any orthtree mesh is also a
block-structured mesh, whereas the opposite is not true. Some of the advantages and disadvan-
tages of these approaches are:

• In a block-structured mesh, blocks can have a flexible size. Computations on larger blocks
are typically more efficient. When ghost cells are required (virtual cells on the boundary
of a block), the overhead is smaller when blocks are larger.

• For an orthtree grid, there is a trade-off: larger block sizes allow for more efficient com-
putations, but reduce the adaptivity of the mesh. For a block structured grid, there is a
similar trade-off: in principle it can be refined in a more flexible way, but adding many
refined blocks increases the overhead.

• The connectivity of the mesh is simpler for an orthtree mesh, because each block has
the same number of cells, and blocks are refined in the same way. This also ensures a
simple relation between fine and coarse meshes. These properties make operations such as
prolongation and restriction easier to implement, especially in parallel.

2.1 Motivation: a brief history

Now given the fact that there are already several frameworks available, what was the motivation
for developing another one? The main reason was that a simple or basic framework seemed to
be missing – at least to our knowledge. Our motivation came from work on time-dependent
simulations of streamer discharges. These discharge have a multiscale nature, and require a fine
mesh in the region where they grow. Furthermore, at every time step Poisson’s equation has to

1Note that we here refer to quadtrees and octrees as orthtrees, because the general name for quadrants and
octants is orthants [1].

2

Figure 1: Left: example of a block-structured grid, taken from [11]. Right: an quadtree grid
consisting of boxes of 2× 2 cells.

be solved. A streamer model that uses a uniform Cartesian grid is therefore computationally
expensive, especially for 3D simulations.

In [12], Paramesh was used for streamer simulations. The main bottleneck in this imple-
mentation was however the Poisson solver. Other streamer models (see e.g., [13, 14, 15]) had
the same problem, because the non-local nature of Poisson’s equation makes an efficient parallel
solution difficult, especially on an adaptively refined grid. An attractive solution method to get
around this is geometric multigrid, discussed in section 6.

We first considered implementing multigrid in Paramesh [5], which already includes an alpha
version of a multigrid solver with the following comment [16]:

This is an ALPHA version of this feature. You should be aware that it may be
‘buggy’. Also, construction of multigrid algorithms and AMR is much less straight-
forward than incorporating AMR into finite-volume hydro codes.

Because Paramesh does not seem to be actively maintained, we decided not to move forward
with it after experiencing several problems (creating and visualizing output, performance with a
large number of blocks, code organization).

Next, we considered Boxlib [2], an actively maintained framework which is also used in
Chombo [3]. Boxlib contains a significant amount of multigrid code, including several examples
that demonstrate how a solver can be set up and used. After spending some time getting
familiar with the framework, we tried to modify the multigrid solver to our needs. This involves
operations like: get the coarse grid values next to refinement boundaries to perform a special
type of ghost cell filling (see section 6.4). Although such tasks are definitely possible in Boxlib,
they are not trivial to implement. The reason is that the framework is quite large and supports
many features, uses MPI parallelization and block-structured grids.

In our experience, a large number of scientific simulations fit into the memory of a desktop
machine or cluster node, which nowadays typically have 16 or 32 gigabytes of RAM. A practical
reason for this is that for larger problems, the visualization of the results becomes quite challeng-
ing. For the application we had in mind, efficient large scale parallelism would anyway be hard,
due to the non-locality of the Poisson equation. Furthermore, writing parallel code with good
scaling takes considerable effort, for which the manpower and resources are often lacking. This
inspired us to develop a framework that uses shared-memory parallelism, which makes many
operations much simpler, because all data can directly be accessed. The goal was to create a
relatively simple framework that could easily be modified, to provide an option in between the
‘advanced’ distributed-memory codes of table 1 and simple uniform grid computations.

3

Figure 2: Left: Example of a quadtree mesh that gets refined. Here boxes contain 2 × 2 cells,
and different boxes have different colors. Right: the spatial indices of the boxes. When a box
with indices (i, j) is refined, its children have indices (2i− 1, 2j − 1) up to (2i, 2j).

3 Overview of data structures

We now start with the description of Afivo’s implementation. First, the properties of orthtree
meshes are discussed. Three data types are used to store these meshes: boxes, levels and trees.
These data types are described below.

3.1 Orthtree meshes

In Afivo, quadtree (2D) and octree (3D) meshes are used, which can be described by the following
rules:

• The mesh is constructed from boxes that each contain ND cells, where D is the number of
coordinates and N is an even number.

• When a box with a grid spacing h is refined, it is subdivided in 2D ‘children’ with grid
spacing h/2.

• The difference in refinement level for adjacent boxes is at most one. This is called ‘2:1
balance’.

Figure 2 shows an example of a quadtree that gets refined. All the boxes are stored in a single
one-dimensional array, so that an integer index can be used to point to a box, see section 3.4
below.

3.2 Box data type

A box is the basic mesh unit in Afivo. Each box consists of ND grid cells, where N has to be an
even number and D is the spatial dimension. In figure 2, there is for example a box with 2× 2
cells at coordinate (1, 1). Each box stores its parent, an array of 2D children and an array of 2D
neighbors. In figure 3a, the indices of the children and the neighbors are shown. A special value
a5_no_box (which is zero) is used to indicate that a parent, child or neighbor does not exist. In
the case of neighbors, boundary conditions are specified by negative numbers.

Two types of cell data are supported by default: cell-centered data and face-centered data,
see figure 3b. These are stored in D + 1-dimensional arrays, so that multiple variables can be

4

Figure 3: a) Each box contains an array of children and neighbors. The ordering of these arrays
is shown here for a 2D box. Red: children, blue: neighbors. b) Location and indices of the
cell-centered variables (black dots) and the face-centered variables in the x-direction (red dots)
for a box of 2× 2 cells.

stored per location. Furthermore, boxes contain some ‘convenience’ information, such at their
refinement level, minimum coordinate and spatial index.

3.3 Level data type

The level data type contains three lists:

• A list with all the boxes at refinement level l

• A list with the parents (boxes that are refined) at level l

• A list with the leaves (boxes that are not refined) at level l

This separation is often convenient, because some algorithms operate only on leaves while others
operate on parents or on all boxes. These lists contain the integer indices of the boxes in the
tree data structure described below.

3.4 Tree data type

The tree data type contains all the data of the mesh. Most importantly, it stores two arrays:
one that contains all the boxes and one that contains all the levels2. Some other information is
also stored: the current maximum refinement level, the number of cells per box-dimension N ,
the number of face and cell-centered variables and the grid spacing ∆x at the coarsest level.

4 Methods

In this section we give a brief overview of the most important methods in Afivo. The names of the
methods for two-dimensional meshes are used, which have the prefix a2. The three-dimensional
analogs have, not surprisingly, a prefix a3.

2Since Afivo is implemented in Fortran, these arrays start at index one.

5

! Initialize tree

call a2_init(tree, & ! Tree to initialize

box_size, & ! Number of cells per coordinate in a box

n_var_cell, & ! Number of face-centered variables

n_var_face, & ! Number of cell-centered variables

dr) ! Distance between cells on base level

! Set the spatial index and neighbors

ix_list(1:2, 1) = 1 ! One box at (1,1)

nb_list(1:4, 1) = 1 ! Periodic box is its own neighbor

! Create the base mesh

call a2_set_base(tree, ix_list, nb_list)

Figure 4: Fortran code fragment that shows how a base mesh can be constructed. In this case,
there is one box at (1, 1), with periodic boundary conditions.

4.1 Creating the initial mesh

In Afivo the coarsest mesh, which covers the full computational domain, is not supposed to
change. To create this mesh there is a routine a2_set_base, which takes as input the spatial
indices of the coarse boxes and their neighbors. In figure 4, a 2D example is shown for creating
a single coarse box at index (1, 1). This box is its own neighbor in all four directions, or in
other words, there are periodic boundary conditions. Physical (non-periodic) boundaries can
be indicated by a negative index for the neighbor. By adjusting the neighbors one can specify
different geometries, the possibilities include meshes that contain a hole, or meshes that consist
of two isolated parts. The treatment of boundary conditions is discussed in section 4.3.

4.2 The refinement procedure

Mesh refinement can be performed by calling the a2_adjust_refinement routine, which should
be passed a user-defined refinement function. This function is then called for each box, and
should set the refinement flag of the box to one of three values: refine (add children), derefine
(remove this box) or keep refinement. It is also possible to set the refinement flags for other
boxes than the current one, which can for example be useful to extend refinements to a neighbor.

In Afivo, a box is either fully refined (with 2D children) or not refined. Furthermore, 2:1
balance is ensured, so that there is never a jump of more than one refinement level between
neighboring boxes. These constraints are automatically handled, so that the user-defined refine-
ment function does not need to impose them.

Each call to a2_adjust_refinement changes the mesh by at most one level. To introduce
larger changes one should call the routine multiple times. A number of rules is used to make the
user-supplied refinement consistent:

• Only leaves can be removed (because the grid changes by at most one level at a time)

• A box flagged for refinement will always be refined, including neighbors that are required
for 2:1 balance

• Boxes cannot be removed if that would violate 2:1 balance

• If all the 2D children of a box are flagged for removal, and the box itself not for refinement,
then the children are removed

6

• Boxes at level one cannot be removed

• Boxes cannot be refined above the maximum allowed refinement level

The a2_adjust_refinement routine returns information on the added and removed boxes
per level, so that a user can set values on the new boxes or clean up data on the removed ones.

When boxes are added or removed in the refinement procedure, their connectivity is auto-
matically updated. References to a removed box are removed from its parent and neighbors.
When a new box is added, its neighbors are found through its parent. Three scenarios can occur:
the neighbor can be one of the other children of the parent, the neighbor can be a child from the
neighbor of the parent, or the neighbor does not exist. In the latter case, there is a refinement
boundary, which is indicated by the special value a5_no_box.

4.3 Filling of ghost cells

When working with numerical grids that are divided in multiple parts, it is often convenient to
use ghost cells. The usage of ghost cells has two main advantages: algorithms can operate on
the different parts without special care for the boundaries, and algorithms can straightforwardly
operate in parallel.

In Afivo each box has one layer of ghost cells for its cell-centered variables, as illustrated in
figure 3b. The built-in routines only fill the ghost cells on the sides of boxes, not those on the
corners. The reasons for implementing ghost cells in this way are discussed in sections 5.1 and
5.2.

For each side of a box, ghost cells can be filled in three ways

• If there is a neighboring box, then the ghost cells are simply copied from this box

• If there is a physical boundary, then the box is passed to a user-defined routine for boundary
conditions

• If there is a refinement boundary, then the box is passed to another user-defined routine

Physical boundaries are indicated by negative values for the neighbor index, and these values are
passed on to the user-defined routine. In this way, one can set up different types of boundary
conditions.

4.4 Interpolation and restriction

Because corner ghost cells are not filled by Afivo, interpolation schemes cannot use diagonal
elements. Instead of the standard bilinear and trilinear interpolation schemes, a 2 − 1 − 1 and
1−1−1−1 scheme is used in 2D and 3D, respectively. These interpolation schemes use information
from the closest and second-closest neighbors; the 2D case is illustrated in figure 5. Zeroth-
order interpolation is also included, in which the coarse values are simply copied without any
interpolation. As a restriction method (going from fine to coarse) Afivo just includes averaging,
in which the parent gets the average value of its children.

A user can of course implement higher order interpolation and restriction methods, by using
information from additional grid locations. It is generally quite complicated to do this consis-
tently near refinement boundaries.

7

Figure 5: Schematic drawing of 2− 1− 1 interpolation. The three nearest coarse grid values are
used to interpolate to the center of a fine grid cell. Note that the same interpolation scheme can
be used for all fine grid cells, because of the symmetry in a cell-centered discretization.

4.5 The list of boxes

In Afivo, all the boxes are stored in a single array. New boxes are always added to the end of
the array, which means that removed boxes leave a ‘hole’. There is a route a2_tidy_up to tidy
up the array: all the unused boxes are moved to the end of the array, and the boxes that are
still in use are sorted by their refinement level. Furthermore, for each level, the boxes are ranked
according to their Morton index [17].

Sometimes, extra storage is required when a2_adjust_refinement has to add new boxes to
the mesh. In such a case, the array of boxes is simply resized so that there is enough space.

4.6 Producing output

It is important that one is able to quickly and conveniently visualize the results of a simulation.
Afivo supports two output formats: VTK unstructured files and Silo files.

For VTK files, Afivo relies on the unstructured format, which support much more general
grids than quadtree and octree meshes. This format should probably only be used for grids of
moderate sizes (e.g., 105 or 106 cells), because visualizing larger grids can be computationally
expensive. Although there is some support for octrees in VTK, this support does not yet extend
to data visualization programs such as Paraview [18] and Visit [19].

Afivo also supports writing Silo files. These files contain a number of Cartesian blocks
(‘quadmeshes’ in Silo’s terminology) that can each contain multiple boxes. This is done by
starting with a region R that contains a single box. If all the neighbors to the left of R exist,
have no children and are not yet included in the output, then these neighbors are added to R.
The procedure is repeated in all directions, until R can no longer grow. Then R represents a
rectangular collection of boxes which can be added to the output, and the procedure start again
from a new box that is not yet included. This merging of boxes is done because writing and
reading a large number separate meshes can be quite costly with the Silo library.

5 Design discussion

5.1 One ghost cell

There are essentially two ways to implement ghost cells in a framework such as Afivo.

8

1. Ghost cells are not stored for boxes. When a computation has to be performed on a box,
there are typically two options: algorithms can be made aware of the mesh structure, or a
box can be temporarily copied to an enlarged box on which ghost cells are filled.

2. Each box includes ghost cells, either a fixed number for all variables or a variable-dependent
number.

Storing ghost cells can be quite costly. For example, adding two layers of ghost cells to a
box of 83 cells requires (12/8)3 = 3.375 times as much storage. With one layer, about two times
as much storage is required. Not storing ghost cells prevents this extra memory consumption.
However, some operations can become more complicated to program, for example when some
type of interpolation depends on coarse-grid ghost cells. Furthermore, one has to take care not
to unnecessarily recompute ghost values, and parallelization becomes slightly harder.

If ghost cells are stored for each box, then there are still two options: store a fixed number of
them for each variable, or let the number of ghost cells vary per variable. In Afivo, we have opted
for the simplest approach: there is always one layer of ghost cells for cell-centered variables. For
numerical operations that depend on the nearest neighbors, such as computing a second order
Laplacian, one ghost cell is enough. When additional ghost cells are required, these can of course
still be computed, there is just no default storage for them.

5.2 No corner ghost cells

In Afivo, corner ghost cells are not used. The reason for this is that in three dimensions, the
situation is quite complicated: there are eight corners, twelve edges and six sides. It is hard to
write an elegant routine to fill all these ghost cells, especially because the corners and edges have
multiple neighbors. Therefore, only the sides are considered in Afivo. This means that Afivo is
not suitable for stencils with diagonal terms.

5.3 OpenMP for parallelism

The two conventional methods for parallel computing are OpenMP (shared memory) and MPI
(communicating tasks). Afivo was designed for small scale parallelism, for example using at most
16 cores, and therefore only supports OpenMP. Compared to an MPI implementation, the main
advantage of OpenMP is simplicity: data can always be accessed, sequential (user) code can
easily be included, there is no need for load balancing and no communication between processes
needs to be set up. For problems that require large scale parallelism, there are already a number
of frameworks available, as discussed in section 2.

Most operations in Afivo loop over a number of boxes, for example the leaves at a certain
refinement level. All such loops have been parallelized by adding OpenMP statements around
them, for example as in figure 6.

The parallel speedup that one can get depends on the cost of the algorithm that one is using.
The communication cost (updating ghost cells) is always about the same, so that an expensive
algorithm will show a better speedup. Furthermore, on a shared memory system, it is not unlikely
for an algorithm to be memory-bound instead of CPU-bound.

6 Multigrid

Multigrid can be seen as a technique to improve the convergence of a relaxation method, by using
a hierarchy of grids. Afivo comes with a built-in geometric multigrid solver, to solve problems of

9

do lvl = 1, tree%max_lvl

!£omp parallel do private(id)

do i = 1, size(tree%lvls(lvl)%ids)

id = tree%lvls(lvl)%ids(i)

call my_method(tree%boxes(id))

end do

!£omp end parallel do

end do

Figure 6: Fortran code fragment that shows how to call my_method for all the boxes in a tree,
from level 1 to the maximum level. Within each level, the routine is called in parallel using
OpenMP.

the form
A(u) = ρ, (1)

where A is a (nearly) elliptic operator, ρ the right-hand side and u the solution to be computed.
In discretized form, we write equation (1) as

Ah(uh) = ρh, (2)

where h denotes the mesh spacing at which the equation is discretized.
There already exists numerous sources on the foundations of multigrid, the different cycles and

relaxation methods, convergence behaviour and other aspects, see for example [20, 21, 22, 23].
Here we will not provide a general introduction to multigrid. Instead we briefly summarize
the main ingredients, and focus on one particular topic: how to implement multigrid on an
adaptively refined quadtree or octree mesh. On such a mesh, the solution has to be specified on
all levels. Therefore we use FAS multigrid, which stands for Full Approximation Scheme. Below,
the implementation of the various multigrid components in Afivo are described.

6.1 The V-cycle

Suppose there are levels l = lmin, lmin + 1, . . . , lmax, then the FAS V-cycle can be described as

1. For l from lmax to lmin + 1, perform Ndown relaxation steps on level l, then update level
l − 1 (see below)

2. Perform Nbase relaxation steps on level lmin, or apply a direct solver

3. For l from lmin + 1 to lmax, perform a correction using the data from level l − 1

uh ← uh + IhH(vH − v′H), (3)

then perform Nup relaxation steps on level l. (See below for the notation)

The first two steps require some extra explanation. Let us denote the level l − 1 grid by H and
the level l grid by h, and let v denote the current approximation to the solution u. Furthermore,
let IhH be an interpolation operator to go from coarse to fine and IHh a restriction operator to go
from fine to coarse. For these operators, the schemes described in section 4.4 are used.
In the first step, the coarse grid is updated in the following way

1. Set vH ← IHh vh, and store a copy v′H of vH

10

2. Compute the the fine grid residual rh = ρh −Ah(vh)

3. Update the coarse grid right-hand side

ρH ← IHh rh +AH(vH) (4)

This last equation can also be written as

ρH ← IHh ρh + τHh ,

where τHh is given by [20, 21, 22, 24, 23]

τHh = AH(IHh vh)− IHh Ah(vh). (5)

This term can be seen as a correction to ρ on the coarse grid. When a solution uh is found such
that Ah(uh) = ρh, then uH = IHh u

h will be a solution to AH(uH) = ρH .
In the second step, relaxation takes place on the coarsest grid. In order to quickly converge

to the solution with a relaxation method, this grid should contain very few points (e.g., 2 × 2
or 4× 4 in 2D). Alternatively, a direct solver can be used on the coarsest grid, in which case it
can be larger. Such a direct method has not yet been built into Afivo, although this is planned
for the future. As a temporary solution, additional coarse grids can be constructed below the
coarsest quadtree/octree level. For example, if a quadtree has boxes of 16× 16 cells, then three
levels can be added below it (8 × 8, 4 × 4 and 2 × 2), which can then be used in the multigrid
routines.

6.2 The FMG-cycle

The full multigrid (FMG) cycle that is implemented in Afivo works in the following way.

1. If there is no approximation of the solution yet, then set the initial guess to zero on all levels,
and restrict ρ down to the coarsest grid using IHh . If there is already an approximation v
to the solution, then restrict v down to the coarsest level. Use equation (4) to set ρ on
coarse grids.

2. For l = lmin, lmin + 1, . . . , lmax

• Store the current approximation vh as v′h
• If l > lmin, perform a coarse grid correction using equation (3)

• Perform a V-cycle starting at level l, as described in the previous section

6.3 Gauss Seidel red-black

In Afivo, we have implemented Gauss Seidel red-black or GS-RB as a relaxation method. This
method is probably described in almost all textbooks on multigrid, such as [20, 21, 22, 23], so
we just give a very brief description.

The red-black refers to the fact that points are relaxed in an alternating manner, using a
checkerboard-like pattern. For example, in two dimensions with indices (i, j) points can be
labeled red when i + j is even and black when i + j is odd. Now consider equation (2), which

typically relates a value u
(i,j)
h to neighboring values and the source term ρ. If we keep the values of

the neighbors fixed, then we can determine the value u
(i,j)
h that locally solves the linear equation.

This is precisely what is done in GS-RB: the linear equations are solved for all the red points
while keeping the old black values, and then vice-versa.

11

Figure 7: Two coarse cells, of which the right one is refined. The cell centers are indicated by
dots. There are two ghost values (red dots) on the left of the refinement boundary. Fluxes across
the refinement boundary are indicated by arrows.

6.4 Conservative filling of ghost cells

The finer levels will typically not cover the complete grid in Afivo, so that ghost cells have to
be used near refinement boundaries. These ghost cells can be filled in multiple ways, which will
affect the multigrid solution and convergence behavior. Here we consider conservative schemes for
filling ghost cells [24, 21]. A conservative scheme ensures that the coarse flux across a refinement
boundary equals the average of the fine fluxes, see figure 7.

Ensuring consistent fluxes near refinement boundaries helps in obtaining a consistent solution.
For example, if we consider a general equation of the form ∇· ~F = ρ, then the divergence theorem
gives ∫

V

ρ dV =

∫
V

∇ · ~F dV =

∫
~F · ~n dS, (6)

where the last integral runs over the surface of the volume V , and ~n is the normal vector to this
surface. This means that when fine and coarse fluxes are consistent, the integral over ρ will be
same on the fine and the coarse grid.

The construction of a conservative scheme for filling ghost cells is perhaps best explained
with an example. Consider a 2D Poisson problem

∇2u = ∇ · (∇u) = ρ, (7)

with a standard 5-point stencil for the Laplace operator

Lh = h−2

 1
1 −4 1

1

 . (8)

With this stencil, the coarse flux fH across the refinement boundary in figure 7 is given by

fH = [u
(2,1)
H − u(1,1)H]/H, (9)

and on the fine grid, the two fluxes are given by

fh,1 = [u
(3,1)
h − g(2,1)h]/h, (10)

fh,2 = [u
(3,2)
h − g(2,2)h]/h. (11)

12

The task is now to fill the ghost cells g
(2,1)
h and g

(2,2)
h in such a way that the coarse flux equals

the average of the fine fluxes, i.e., such that

fH = (fh,1 + fh,2)/2 (12)

To relate u
(2,1)
H to the refined values uh, the restriction operator IHh needs to be specified. In our

implementation, this operator does averaging over the children, which can be represented as

IHh =
1

4

[
1 1
1 1

]
. (13)

The constraint from equation (12) can then be written as

g
(2,1)
h + g

(2,2)
h = u

(1,1)
H +

3

4

(
u
(3,1)
h + u

(3,2)
h

)
− 1

4

(
u
(4,1)
h + u

(4,2)
h

)
. (14)

Any scheme for the ghost cells that satisfies this constraint will be a conservative discretization.
Bilinear extrapolation (similar to standard bilinear interpolation) gives the following scheme

for g
(2,1)
h

g
(2,1)
h =

1

2
u
(1,1)
H +

9

8
u
(3,1)
h − 3

8

(
u
(3,2)
h + u

(4,1)
h

)
+

1

8
u
(4,2)
h . (15)

(The scheme for g
(2,2)
h should then be obvious.) Another option is to use only the closest two

neighbors for the extrapolation, which gives the following expression for g
(2,1)
h

g
(2,1)
h =

1

2
u
(1,1)
H + u

(3,1)
h − 1

4

(
u
(3,2)
h + u

(4,1)
h

)
. (16)

This last scheme is how refinement-boundary ghost cells are filled by default in Afivo.

6.4.1 Three-dimensional case

In three spatial dimensions, the 5-point stencil of equation (8) becomes a 7-point stencil with -6
at the center, and the restriction operator has eight entries of 1/8. The analog of equation (16)
then becomes

g
(2,1,1)
h =

1

2
u
(1,1,1)
H +

5

4
u
(3,1,1)
h − 1

4

(
u
(4,1,1)
h + u

(3,2,1)
h + u

(3,1,2)
h

)
. (17)

6.4.2 Change in ε at cell face

For the more general equation with a coefficient ε

∇ · (ε∇u) = ρ, (18)

we consider a special case: ε jumps from ε1 to ε2 at a cell face. Local reconstruction of the
solution shows that a gradient (φi+1 − φi)/h has to be replaced by

2 ε1ε2
ε1ε2

φi+1 − φi
h

, (19)

or in other words, the gradient is multiplied by the harmonic mean of the ε’s (see for example
chapter 7.7 of [21]). The 5-point stencil for the Laplacian can be modified accordingly.

When a jump in ε occurs on a coarse cell face, it will also be located on a fine cell face,
see figure 7. In this case, the ghost cell schemes described above for constant ε still ensure
flux conservation. The reason is that the coarse and fine flux are both weighted by a factor
2 ε1ε2/(ε1ε2).

13

6.4.3 Cylindrical case

In cylindrical coordinates, the Laplace operator can be written as

∇2u =
1

r
∂r(r∂ru) + ∂2zu = ∂2ru+

1

r
∂ru+ ∂2zu, (20)

where we have assumed cylindrical symmetry (no φ dependence). At a radius r 6= 0, the 5-point
stencil is

Lh = h−2

 1
1− h

2r −4 1 + h
2r

1

 . (21)

With the cell-centered grids in Afivo, radial grid points are located at (i− 1
2)h for i = 1, 2, 3, . . .,

which means we do not have to consider the special case r = 0. For this type of grid indexing,
the 5-point stencil can also be written as

Lh = h−2

 1
2i−2
2i−1 −4 2i

2i−1
1

 . (22)

If we do not modify the restriction operator, then the ghost cells can still be filled with the
schemes from equations (16) and (17). One way to interpret this is that fluxes are computed in
the same way in cylindrical coordinates, although their divergence is weighted by the radius:

∇ · ~F =
1

r
∂r(rFr) + . . . (23)

From figure 7, we can see that for refinement in the r-direction, the coarse and fine flux are
‘weighted’ by the same radius. For the fluxes in the z-direction, the computations are the same
as for the Cartesian case. Note that when the restriction operator is changed to include radial
weighting, these arguments are no longer valid.

6.5 Multigrid test problems

In this section we present two test problems to demonstrate the multigrid behavior on a partially
refined mesh. We use the ‘method of manufactured solutions’: from an analytic solution the
right-hand side and boundary conditions are computed. Two test problems are considered, a
constant-coefficient Poisson equation

∇2u = ∇ · (∇u) = ρ (24)

and a cylindrical version with a coefficient ε

1

r
∂r(rε∂ru) + ∂z(ε∂zu) = ρ, (25)

both on a two-dimensional rectangular domain [0, 1]× [0, 1]. For the second case, ε has a value
of 100 in the lower left quadrant [0, 0.25]× [0, 0.25], and a value 1 in the rest of the domain. In
both cases, we pick the following solution for u

u(r) = exp(|~r − ~r1| /σ) + exp(|~r − ~r2| /σ), (26)

14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

0 2 4 6 8 10 12

R
es

id
u

a
l

FMG iteration

Case 1
Case 2

c0 · 0.056x

Figure 8: Left: mesh spacing used for the multigrid examples, in a [0, 1] × [0, 1] domain. Each
step in color is a factor two in refinement, with red indicating ∆x = 2−5 and the darkest blue
indicating ∆x = 2−12. Right: the maximum residual versus FMG iteration, case 1 corresponds
to equation (24) and case 2 to equation (25).

where ~r1 = (0.25, 0.25), ~r2 = (0.75, 0.75) and σ = 0.04. An analytic expression for the right-hand
side ρ is obtained by plugging the solution in equations (24) and (25)3, and the solution itself is
used to set boundary conditions.

The two different problems can now be solved numerically. For the cylindrical case with the
varying ε, a modified Laplacian operator is used, as described in section 6.4. The Gauss Seidel
red-black relaxation methods are also modified, because they depend on the applied operator,
see section 6.3. For these examples, we have used Ndown = Nup = Nbase = 2 (number of
down/up/base smoothing steps), and a coarsest grid of 2× 2 cells.

It is possible to do adaptive mesh refinement in multigrid, for example by using an estimate
of the local truncation error based on equation (5) (see also chapter 9 of [21]). Such a technique
is not used here, instead the refinement criterion is based on the right-hand side: refine if
∆x2|ρ| > 5.0× 10−4. The resulting mesh spacing is shown in figure 8a.

In both cases, one FMG (full multigrid) cycle is enough to achieve convergence up to the
discretization error, which was approximately 10−4 for the mesh of figure 8a. Consecutive FMG
cycles have a negligible effect on the absolute error, although they do reduce the residual r = ρ−
∇2u. The maximum value of |r| is shown versus iteration number in figure 8b. The convergence
behaviour is similar for both cases, with each iteration reducing the residual by a factor of about
0.056. The offset between the lines is caused by the ε = 100 region, which locally amplifies the
source term by a factor of 100.

7 Implementing a plasma fluid model

To illustrate how Afivo can be used, we describe the implementation of a simple 2D/3D plasma
fluid model for streamer discharges below. For simplicity, photoionization is not included in this
example. A review of fluid models for streamer discharges can be found in [15].

3Note that jumps in ε also contribute to the source term ρ.

15

7.1 Model formulation

We use the so-called drift-diffusion-reaction approximation:

∂tne = −∇ ·~je + ᾱ
∣∣∣~je∣∣∣ , (27)

∂tni = ᾱ
∣∣∣~je∣∣∣ , (28)

~je = −µene ~E −De∇ne, (29)

where ne is the electron density, ni the positive ion density, ~je the electron flux, ᾱ the effective
ionization coefficient, µe the electron mobility, De the electron diffusion coefficient and ~E the
electric field. The above equations are coupled to the electric field, which we compute in the
electrostatic approximation:

~E = −∇φ, (30)

∇2φ = −ρ/ε0 (31)

ρ = e(ni − ne), (32)

where φ is the electric potential, ε0 the permittivity of vacuum and e the elementary charge.
The electric potential is computed with the multigrid routines described in section 6.

We make use of the local field approximation [25], so that µe, De and ᾱ are all functions of

the local electric field strength E =
∣∣∣ ~E∣∣∣. These coefficients can be obtained experimentally, or

they can be computed with a Boltzmann solver [26, 27] or particle swarms [28].

7.2 Flux calculation and time stepping

The electron flux is computed as in [13]. For the diffusive part, we use central differences. The
advective part is computed using the Koren limiter [29]. The Koren limiter was not designed to
include refinement boundaries, and we use linear interpolation to obtain fine-grid ghost values.
These ghost cells lie inside a coarse-grid neighbor cell, and we limit them to twice the coarse
values to preserve positivity. (We would like to improve this in the future.)

Time stepping is also performed as in [13], using the explicit trapezoidal rule, also known as
the modified Euler’s method. The time step is determined by a CFL condition for the electron
flux and the dielectric relaxation time, as in [13].

7.3 Refinement criterion

Our refinement criterion contains two components: a curvature monitor cφ for the electric po-
tential and a monitor ᾱ∆x which gives information on how well the ionization length (1/ᾱ) is
resolved. For both, we use the maximum value found in a box in order to decide whether to
(de)refine it.

Since ∇2φ = −ρ/ε0, the curvature monitor can be computed as cφ = ∆x2|ρ|/ε0. The
quantity ᾱ∆x is computed by locating the highest electric field in the box, and looking up the
corresponding value of ᾱ. The combined refinement criterion is then as follows, where later rules
can override earlier ones:

• If ᾱ∆x < 0.1 and ∆x < 25µm, derefine.

• If t < 2.5 ns, ensure that there is enough refinement around the initial seed to resolve it.

• If ᾱ∆x > 1.0 and cφ > 0.1 Volt, refine.

16

Figure 9: Cross section through the center of the three-dimensional simulation domain. The
ionized seeds with a density of 1020 m−3 electrons and ions are indicated in red. There is a
background density of 5× 1015 m−3 electrons and ions, and the background electric field points
down with a magnitude E0 = 2.5 MV/m.

7.4 Simulation conditions and results

A cross section through the computational domain of (32 mm)3 is shown in figure 9. The back-
ground field points down, with a magnitude E0 = 2.5 MV/m, which is about 5/6th of the critical
field. The background field is applied by grounding the bottom boundary of the domain, and
applying a voltage at the top. At the other sides of the domain we use Neumann boundary con-
ditions for the potential. We use transport coefficients (e.g., ᾱ, µe) for atmospheric air, but for
simplicity photoionization has not been included. Instead a background density of 5× 1015 m−3

electrons and positive ions is present.
Two seeds of electrons and ions locally enhance the background electric field, see figure 9.

These seeds have a density of 1020 m−3, a width of about 0.3 mm and a length of 1.6 mm. The
electrons from these seeds will drift upwards, enhancing the field at the bottom of the seed where
a positive streamer can form.

In figure 10, the time evolution of the electron density is shown, and in figure 11 the electric
field is shown. Two positive streamers grow downwards from the ionized seeds. The upper one
is attracted to the negatively charged end of the lower one, and connects to it at around 9.5 ns.
The three-dimensional simulation took about 3.5 hours on a 16-core machine, and eventually
used about 1.3× 107 grid cells.

References

References

[1] Erick Wong. Name of the generalization of quadtree and octree? [Online; accessed 17-July-
2015].

[2] Ann S. Almgren et al. Boxlib. [Online; accessed 22-July-2015].

[3] P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W.
McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen. Chombo
software package for AMR applications - design document, 2011.

17

1 ns 3 ns 5 ns 7 ns 9 ns 11 ns 13 ns 15 ns 17 ns

Figure 10: A three-dimensional simulation showing two positive streamers propagating down-
wards. The upper one connects to the back of the lower one. The electron density is shown using
volume rendering, for which the opacity is indicated in the legend; low densities are transparent.

15

7.5

0.0
electric field

(MV/m)

3.75

11.25

1 ns 3 ns 5 ns 7 ns 9 ns 11 ns 13 ns 15 ns 17 ns

Figure 11: Cross section through the three-dimensional domain showing the time evolution of
the electric field. The full height of the domain is shown (32 mm), but only 6 mm of the width.

18

[4] Richard D. Hornung, Andrew M. Wissink, and Scott R. Kohn. Managing complex data
and geometry in parallel structured amr applications. Engineering with Computers, 22(3-
4):181–195, Aug 2006.

[5] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and Charles
Packer. Paramesh: A parallel adaptive mesh refinement community toolkit. Computer
Physics Communications, 126(3):330–354, Apr 2000.

[6] Rahul S. Sampath, Santi S. Adavani, Hari Sundar, Ilya Lashuk, and George Biros. Dendro:
Parallel algorithms for multigrid and amr methods on 2:1 balanced octrees. 2008 SC - Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
Nov 2008.

[7] Tobias Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian
Grids. Technische Universität München, 2009.

[8] Stéphane Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equations
in complex geometries. Journal of Computational Physics, 190(2):572–600, Sep 2003.

[9] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement. A&A, 385(1):337–
364, Apr 2002.

[10] Donna Calhoun. Adaptive mesh refinement resources. [Online; accessed 17-July-2015].

[11] John Bell. Block Structured AMR Short Course: Lecture 1. [Online; accessed 17-July-2015].

[12] S. Pancheshnyi, P. Ségur, J. Capeillère, and A. Bourdon. Numerical simulation of filamen-
tary discharges with parallel adaptive mesh refinement. Journal of Computational Physics,
227(13):6574–6590, Jun 2008.

[13] C. Montijn, W. Hundsdorfer, and U. Ebert. An adaptive grid refinement strategy for the
simulation of negative streamers. Journal of Computational Physics, 219(2):801–835, Dec
2006.

[14] Chao Li, Ute Ebert, and Willem Hundsdorfer. Spatially hybrid computations for streamer
discharges: II. fully 3D simulations. Journal of Computational Physics, 231(3):1020–1050,
Feb 2012.

[15] A. Luque and U. Ebert. Density models for streamer discharges: Beyond cylindrical sym-
metry and homogeneous media. Journal of Computational Physics, 231(3):904–918, Feb
2012.

[16] Kevin Olson. Alpha version of paramesh multigrid support. [Online; accessed 17-July-2015].

[17] G.M. Morton. A computer oriented geodetic data base; and a new technique in file sequenc-
ing. IBM Research Report, 1966.

[18] Kitware. Paraview. [Online; accessed 22-July-2015].

[19] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David Pugmire,
Kathleen Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber, Hari Krishnan, Thomas
Fogal, Allen Sanderson, Christoph Garth, E. Wes Bethel, David Camp, Oliver Rübel, Marc
Durant, Jean M. Favre, and Paul Navrátil. VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data. In High Performance Visualization–Enabling Extreme-Scale
Scientific Insight, pages 357–372. Chapman and Hall/CRC, Oct 2012.

19

[20] Achi Brandt and Oren E. Livne. Multigrid Techniques. Society for Industrial & Applied
Mathematics (SIAM), Jan 2011.

[21] U. Trottenberg, C.W. Oosterlee, and A. Schuller. Multigrid. Elsevier Science, 2000.

[22] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial (2nd

Ed.). Society for Industrial & Applied Mathematics, Philadelphia, PA, USA, 2000.

[23] Wolfgang Hackbusch. Multi-grid methods and applications. Springer Series in Computa-
tional Mathematics, 1985.

[24] D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM Journal on
Scientific and Statistical Computing, 8(2):109–134, Mar 1987.

[25] Chao Li, W. J. M. Brok, Ute Ebert, and J. J. A. M. van der Mullen. Deviations from the local
field approximation in negative streamer heads. Journal of Applied Physics, 101(12):123305,
2007.

[26] G J M Hagelaar and L C Pitchford. Solving the boltzmann equation to obtain electron
transport coefficients and rate coefficients for fluid models. Plasma Sources Science and
Technology, 14(4):722–733, Oct 2005.

[27] Saša Dujko, Ute Ebert, Ronald D. White, and Zoran Lj. Petrović. Boltzmann equation
analysis of electron transport in a N2-O2 streamer discharge. Japanese Journal of Applied
Physics, 50(8):08JC01, Aug 2011.

[28] Chao Li, Ute Ebert, and Willem Hundsdorfer. Spatially hybrid computations for streamer
discharges with generic features of pulled fronts: I. planar fronts. Journal of Computational
Physics, 229(1):200–220, Jan 2010.

[29] B. Koren. A robust upwind discretization method for advection, diffusion and source terms.
In C.B. Vreugdenhil and B. Koren, editors, Numerical Methods for Advection-Diffusion
Problems, pages 117–138. Braunschweig/Wiesbaden: Vieweg, 1993.

20

